Chapter 14: Chemical Kinetics

- Which one of the following units would *not* be an acceptable way to express reaction rate?
 A) M/s B) M · min⁻¹ C) L · mol⁻¹ · s⁻¹ D) mol · L⁻¹ · s⁻¹ E) mmHg/min
- 3. For the reaction $BrO_3^- + 5Br^+ 6H^+ \rightarrow 3Br_2 + 3H_2O$ at a particular time, $-\Delta[BrO_3^-]/\Delta t = 1.5 \times 10^{-2} \text{ M/s}$. What is $-\Delta[Br^-]/\Delta t$ at the same instant? A) 13 M/s D) $3.0 \times 10^{-3} \text{ M/s}$ B) $7.5 \times 10^{-2} \text{ M/s}$ E) 330 M/sC) $1.5 \times 10^{-2} \text{ M/s}$

5. For the reaction $C_6H_{14}(g) \rightarrow C_6H_6(g) + 4H_2(g)$, $\Delta P(H_2)/\Delta t$ was found to be 2.5×10^{-2} atm/s, where $\Delta P(H_2)$ is the change in pressure of hydrogen. Determine $\Delta P(C_6H_{14})/\Delta t$ for this reaction at the same time.

A) 2.5×10^{-2} atm/s

- D) 0.10 atm/s
- B) -6.2×10^{-3} atm/s
- C) -2.5×10^{-2} atm/s

- E) 6.2×10^{-3} atm/s
- $C_{j} = 2.5 \times 10^{-10}$ at 10^{-3}
- 7. For the overall chemical reaction shown below, which one of the following statements can be rightly assumed?

 $2H_2S(g) + O_2(g) \rightarrow 2S(s) + 2H_2O(l)$

- A) The reaction is third-order overall.
- B) The reaction is second-order overall.
- C) The rate law is, rate = $k[H_2S]^2[O_2]$.
- D) The rate law is, rate = $k[H_2S][O_2]$.
- E) The rate law cannot be determined from the information given.
- 9. For the hypothetical reaction $A + 3B \rightarrow 2C$, the rate should be expressed as
 - A) rate = $\Delta[A]/\Delta t$. D) rate = $\frac{1}{2} \Delta[C]/\Delta t$.
 - B) rate = $-\Delta[C]/\Delta t$. E) rate = $\frac{1}{3}\Delta[B]/\Delta t$.
 - C) rate = $-3 \Delta[B]/\Delta t$.
- 11. The reaction $A + 2B \rightarrow$ products was found to have the rate law, rate = k[A] [B]². Predict by what factor the rate of reaction will increase when the concentration of A is doubled and the concentration of B is also doubled.

A) 2 B) 4 C) 6 D) 8 E) 9

- 13. Appropriate units for a first-order rate constant are C) 1/s. D) $1/M^2$ s. A) M/s. B) 1/M·s.
- 15. A rate constant will have the units mol $\cdot L^{-1} \cdot s^{-1}$ when the reaction is overall
 - zero order. third order. A) D)
 - first order. E) fourth order.
 - C) second order.

B)

- 17. Chlorine dioxide reacts in basic water to form chlorite and chlorate according to the following chemical equation:

 $2\text{ClO}_2(\text{aq}) + 2\text{OH}^-(\text{aq}) \rightarrow \text{ClO}_2^-(\text{aq}) + \text{ClO}_3^-(\text{aq}) + \text{H}_2\text{O}(\text{l})$ A kinetic study of this reaction under a certain set of conditions yielded the data below.

Exp	[ClO ₂] (M)	[OH ⁻] (M)	$-\Delta[ClO_2]/\Delta t (M/s)$
1	0.0500	0.100	5.75×10^{-2}
2	0.100	0.100	2.30×10^{-1}
3	0.100	0.0500	$1.15 \ge 10^{-1}$

- D) rate = $k[ClO_2]^2[OH^-]^2$ rate = $k[ClO_2][OH^-]$ A)
- rate = $k[ClO_2]^2[OH^-]$ B)
- rate = $k[ClO_2][OH^-]^2$ C)

- rate = $k[ClO_2]^4[OH^-]$ E)
- 19. Use the following data to determine the rate law for the reaction shown below.

2N	$O + H_2 \rightarrow$	$N_2O + H_2O$		
	<u>Expt. #</u>	[NO] ₀	$[H_2]_0$	Initial rate
	1	0.021	0.065	1.46 M/min
	2	0.021	0.260	1.46 M/min
	3	0.042	0.065	5.84 M/min
				2
A)	rate = k[N	[0]	D)	rate = $k[NO]^2[H_2]$
B)	rate = k[N	$[\mathbf{O}]^2$	E)	rate = $k[NO]^2[H_2]^2$
C)	rate = k[N	$[O][H_2]$		

- 21. At 25°C the rate constant for the first-order decomposition of a pesticide solution is 6.40 $\times 10^{-3}$ min⁻¹. If the starting concentration of pesticide is 0.0314 M, what concentration will remain after 62.0 min at 25°C?
 - D) 2.11×10^{-2} M $1.14 \times 10^{-1} \text{ M}$ A) $2.68 \times 10^{-2} \text{ M}$ E)
 - B) 47.4 M
 - -8.72.0 M C)

23. The following initial rate data apply to the reaction below.

-		• •	
$F_2(g) + 2Cl_2O(g)$	\rightarrow 2FClO ₂ (g) +	$Cl_2(g)$	
<u>Expt. #</u>	[F ₂] (M)	$[Cl_2O](M)$	Initial rate
1	0.05	0.010	$5.0 imes 10^{-4}$
2	0.05	0.040	2.0×10^{-3}
3	0.10	0.010	1.0×10^{-3}

Which of the following is the rate law	(rate equation) for this reaction?
$1 \Gamma 1^2 \Gamma 1^2$	\mathbf{D} $(1 \mathbf{D} 1 \mathbf{D})$

A)	$rate = k[F_2]^2 [Cl_2O]^4$		rate = $k[F_2][Cl_2O]^2$
B)	rate = $k[F_2]^2[Cl_2O]$	E)	rate = $k[F_2]^2[Cl_2O]^2$

C) rate = $k[F_2][Cl_2O]$

25. A first-order reaction has a rate constant of $3.00 \times 10^{-3} \text{ s}^{-1}$. The time required for the reaction to be 75.0% complete is

A) 95.8 s. B) 462 s. C) 231 s. D) 201 s. E) 41.7 s.

27. Ammonium ion (NH_4^+) reacts with nitrite ion (NO_2^-) to yield nitrogen gas and liquid water. The following initial rates of reaction have been measured for the given reactant concentrations.

<u>Expt. #</u>	$[NH_4^+]$	$[NO_2^-]$	Initial rate (M/hr)
1	0.010	0.020	0.020
2	0.015	0.020	0.030
3	0.030	0.010	0.015

Which of the following is the rate law (rate equation) for this reaction?

A)	rate = k $[NH_4^+] [NO_2^-]^4$		rate = k $[NH_4^+]^2 [NO_2^-]$
B)	rate = k $[NH_4^+] [NO_2^-]$	E)	rate = k $[NH_4^+]^{1/2} [NO_2^-]^{1/4}$
C)	rate = k $[NH_4^+] [NO_2^-]^2$		

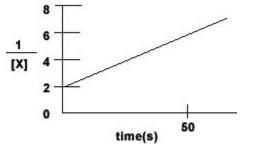
29. The isomerization of cyclopropane to form propene is a first-order reaction.

$$H_2C \longrightarrow H_3C - CH = CH_2$$

 $CH_2 \longrightarrow H_3C - CH = CH_2$

At 760 K, 15% of a sample of cyclopropane changes to propene in 6.8 min. What is the half-life of cyclopropane at 760 K?

A) 3.4×10^{-2} min B) 2.5 min C) 23 min D) 29 min E) 230 min


31. The isomerization of cyclopropane to propene follows first-order kinetics.

At 700 K, the rate constant for this reaction is $6.2 \times 10^{-4} \text{ min}^{-1}$. How many minutes are required for 10.0% of a sample of cyclopropane to isomerize to propene? A) 16,100 min B) 170 min C) 3,710 min D) $1.43 \times 10^{-3} \text{ min}$ E) 1,120 min

- 33. A city's water supply is contaminated with a toxin at a concentration of 0.63 mg/L. Fortunately, this toxin decomposes to a safe mixture of products by first-order kinetics with a rate constant of 0.27 day⁻¹. How long will it take for half of the toxin to decompose?
 A) 0.17 days
 B) 0.27 days
 C) 0.38 days
 D) 2.3 days
 E) 2.6 days
- 35. A first-order reaction has a rate constant of 7.5×10^{-3} /s. The time required for the reaction to be 60% complete is A) 3.8×10^{-3} s. B) 6.9×10^{-3} s. C) 68 s. D) 120 s. E) 130 s.
- 37. Benzoyl chloride, C₆H₅COCl, reacts with water to form benzoic acid, C₆H₅COOH, and hydrochloric acid. This first-order reaction is 25% complete after 26 s. How much longer would one have to wait in order to obtain 99% conversion of benzoyl chloride to benzoic acid?
 - A) 393 s B) 419 s C) 183 s D) 293 s E) 209 s
- 39. A certain reaction A → *products* is second order in A. If this reaction is 85% complete in 12 minutes, how long would it take for the reaction to be 15% complete?
 A) 110 s
 B) 27 s
 C) 62 s
 D) 130 s
 E) 22 s

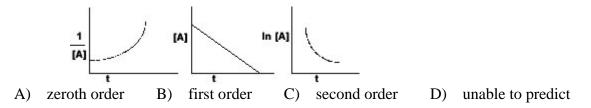
41. For the reaction $X + Y \rightarrow Z$, the reaction rate is found to depend only upon the concentration of X. A plot of 1/X verses time gives a straight line.

What is the rate law for this reaction? B) rate = $k [X]^2$ A) rate = k[X]C) rate = k [X][Y]D) rate = k $[\mathbf{X}]^2[\mathbf{Y}]$

43. The thermal decomposition of acetaldehyde, $CH_3CHO \rightarrow CH_4 + CO$, is a second-order reaction. The following data were obtained at 518°C.

<u>time, s</u>	Pressure CH ₃ CHO,	mmHg
0	364	
42	330	
105	290	
720	132	

Calculate the rate constant for the decomposition of acetaldehyde from the above data.


- D) 6.7×10^{-6} /mmHg s 2.2×10^{-3} /s A)
- 0.70 mmHg/sB)
- 2.2×10^{-3} /mmHg s C)

 5.2×10^{-5} /mmHg s E)

45. For the chemical reaction $A \rightarrow B + C$, a plot of $[A]_t$ versus time is found to give a straight line with a negative slope. What is the order of reaction with respect to A?

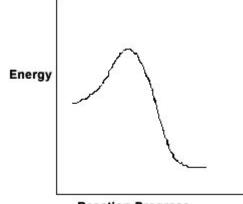
- A) zeroth
- B) first
- C) second
- D) third
- Such a plot cannot reveal the order of the reaction. E)

47. The graphs below all refer to the same reaction. What is the order of this reaction?

49. For a second order reaction, the half-life is equal to			
A)	$t_{1/2} = 0.693/k.$	D)	$t_{1/2} = k.$
B)	$t_{1/2} = k/0.693.$	E)	$t_{1/2} = [A]_o/2k.$
C)	$t_{1/2} = 1/k[A]_o.$		

- 51. The Arrhenius equation is $k = Ae^{-Ea/RT}$. The slope of a plot of ln k vs. 1/T is equal to A) -k. B) k. C) E_a . D) $-E_a/R$. E) A.
- 53. The activation energy for the reaction $CH_3CO \rightarrow CH_3 + CO$ is 71 kJ/mol. How many times greater is the rate constant for this reaction at 170 °C than at 150 °C? A) 0.40 B) 1.1 C) 2.5 D) 4.0 E) 5.0
- 55. At 25°C, by what factor is the reaction rate increased by a catalyst that reduces the activation energy of the reaction by 1.00 kJ/mol?
 A) 1.63 B) 123 C) 1.04 D) 1.50 E) 2.53
- 57. The activation energy for the following reaction is 60. kJ/mol. Sn²⁺ + 2Co³⁺ → Sn⁴⁺ + 2Co²⁺ By what factor (how many times) will the rate constant increase when the temperature is raised from 10°C to 28°C? A) 1.002 B) 4.6 C) 5.6 D) 2.8 E) 696
- 59. The isomerization of methyl isocyanide, $CH_3NC \rightarrow CH_3CN$, follows first-order kinetics. The half-lives were found to be 161 min at 199°C and 12.5 min at 230°C. Calculate the activation energy for this reaction.
 - A) 6.17×10^{-3} kJ/mol D) 124 kJ/mol
 - B) 31.4 kJ/mol

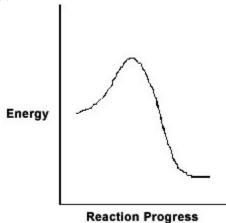
E) 163 kJ/mol


C) 78.2 kJ/mol

- 61. The reaction $C_4H_{10} \rightarrow C_2H_6 + C_2H_4$ has an activation energy (E_a) of 350 kJ/mol, and the E_a of the reverse reaction is 260 kJ/mol. Estimate ΔH , in kJ/mol, for the reaction as written above.
 - A) -90 kJ/mol D) -610 kJ/mol
 - B) +90 kJ/mol E) +610 kJ/mol
 - C) 350 kJ/mol

63. Given that E_a for a certain biological reaction is 48 kJ/mol and that the rate constant is 2.5 $\times 10^{-2} \text{ s}^{-1}$ at 15°C, what is the rate constant at 37°C?

- A) $2.7 \times 10^{-2} \text{ s}^{-1}$ D) $6.0 \times 10^{-3} \text{ s}^{-1}$
- B) $2.5 \times 10^{-1} \text{ s}^{-1}$ E) 1.1 s^{-1}
- C) $1.0 \times 10^{-1} \text{ s}^{-1}$


- L) 1.1 5
- 65. For the chemical reaction system described by the diagram below, which statement is true?

Reaction Progress

- A) The forward reaction is endothermic.
- B) The activation energy for the forward reaction is greater than the activation energy for the reverse reaction.
- C) At equilibrium, the activation energy for the forward reaction is equal to the activation energy for the reverse reaction.
- D) The activation energy for the reverse reaction is greater than the activation energy for the forward reaction.
- E) The reverse reaction is exothermic.

67. For the chemical reaction system described by the diagram below, which statement is true?

If the E_a for the forward reaction is 25 kJ/mol and the enthalpy of reaction is -95 kJ/mol, what is E_a for the reverse reaction?

A) 120 kJ/mol B) 70 kJ/mol C) 95 kJ/mol D) 25 kJ/mol E) -70 kJ/mol

- 69. When the concentrations of reactant molecules are increased, the rate of reaction increases. The best explanation for this phenomenon is that as the reactant concentration increases,
 - A) the average kinetic energy of molecules increases.
 - B) the frequency of molecular collisions increases.
 - C) the rate constant increases.
 - D) the activation energy increases.
 - E) the order of reaction increases.
- 71. The rate law for the reaction $H_2O_2 + 2H^+ + 2I^- \rightarrow I_2 + 2H_2O$ is rate = k[H₂O₂][I⁻]. The following mechanism has been suggested.

H_2C	$D_2 + I^- \rightarrow HOI + OH^-$	slow		
OH	$^{-}$ + H ⁺ \rightarrow H ₂ O	fast		
НО	$I + H^+ + I^- \rightarrow I_2 + H_2O$	fast		
Ident	Identify all intermediates included in this mechanism.			
A)	H^+ and I^-	D)	H^+ only	
B)	H^+ and HOI	E)	H ₂ O and OH ⁻	
C)	HOI and OH^-			

73. The rate law for the reaction $2NO_2 + O_3 \rightarrow N_2O_5 + O_2$ is rate = k[NO₂][O₃]. Which one of the following mechanisms is consistent with this rate law?

	· · · · · · · · · · · · · · · · · · ·		
A)	$NO_2 + NO_2 \rightarrow N_2O_4$	(fast)	
	$N_2O_4 + O_3 \rightarrow N_2O_5 + O_2$	(slow)	
B)	$NO_2 + O_3 \rightarrow NO_5$		(fast)
	$NO_5 + NO_5 \rightarrow N_2O_5 + \frac{5}{2}O_2$	(slow)	
C)	$NO_2 + O_3 \rightarrow NO_3 + O_2$	(slow)	
	$NO_3 + NO_2 \rightarrow N_2O_5$	(fast)	
D)	$NO_2 + NO_2 \rightarrow N_2O_2 + O_2$	(slow)	
	$N_2O_2 + O_3 \rightarrow N_2O_5$	(fast)	

75. The gas phase reaction of nitrogen dioxide and carbon monoxide was found by experiment to be second-order with respect to NO₂, and zeroth-order with respect to CO below 25 °C.

 $NO_2 + CO \rightarrow NO + CO_2$

Which one of the following mechanisms is consistent with the observed reaction order?

- A) $NO_2 + 2CO \rightarrow N + 2CO_2$ fast $N + NO_2 \rightarrow 2NO$ slow $NO_2 + 2CO \rightarrow N + 2CO_2$ B) slow $N + NO_2 \rightarrow 2NO$ fast $NO_2 + NO_2 \rightarrow NO_3 + NO$ C) fast $NO_3 + CO \rightarrow NO_2 + CO_2$ slow $NO_2 + NO_2 \rightarrow NO_3 + NO$ D) slow $NO_3 + CO \rightarrow NO_2 + CO_2$ fast
- 77. Complete the following statement: A catalyst
 - A) increases the activation energy.
 - B) alters the reaction mechanism.
 - C) increases the average kinetic energy of the reactants.
 - D) increases the concentration of reactants.
 - E) increases the collision frequency of reactant molecules.
- 79. The activation energy of a certain uncatalyzed reaction is 64 kJ/mol. In the presence of a catalyst, the E_a is 55 kJ/mol. How many times faster is the catalyzed than the uncatalyzed reaction at 400°C? Assume that the frequency factor remains the same.
 A) 5.0 times
 B) 1.16 times
 C) 15 times
 D) 2.0 times
 E) 0.2 times

- 81. Peroxodisulfate ion can oxidize iodide ions to iodine according to the balanced equation $S_2O_8^{2^-} + 2I^- \rightarrow 2SO_4^{2^-} + I_2$. The reaction is catalyzed by certain chemical species. Identify the catalyst in the following mechanism: step 1: $Fe^{3+} + 2I^- \rightarrow Fe^{2+} + I_2$ step 2: $S_2O_8^{2^-} + Fe^{2+} \rightarrow 2SO_4^{2^-} + Fe^{3+}$ A) Fe^{3+} B) I^- C) $S_2O_8^{2^-}$ D) Fe^{2+} E) $SO_4^{2^-}$
- 83. For the reaction whose rate law is rate = k[X], a plot of which of the following is a straight line?
 - A) [X] versus time D) [X] versus 1/time
 - ln [X] versus time E) ln [X] versus 1/time
 - C) 1/[X] versus time

B)

- 85. At a particular temperature the first-order gas-phase reaction 2N₂O₅ → 2N₂O₄ + O₂ has a half-life for the disappearance of dinitrogen pentoxide of 3240 s. If 1.00 atm of N₂O₅ is introduced into an evacuated 5.00 L flask, what will be the total pressure of the gases in the flask after 1.50 hours?
 A) 0.685 atm B) 1.00 atm C) 0.315 atm D) 1.68 atm E) 1.34 atm
- 87. When acetaldehyde at a pressure of 364 mmHg is introduced into an evacuated 500. mL flask at 518°C, the half-life for the second-order decomposition process, CH₃CHO → CH₄ + CO, is 410. s. What will the total pressure in the flask be after 1.00 hour?
 A) 327 mmHg
 B) 654 mmHg
 C) 37 mmHg
 D) 691 mmHg
 E) 728 mmHg
- 89. The first-order decomposition of phosphene to phosphorus and hydrogen $4PH_3(g) \rightarrow P_4(g) + 6H_2(g)$ has a half-life of 35.0 s at 680°C. Starting with 520 mmHg of pure phosphene in an 8.00-L flask at 680°C, how long will it take for the total pressure in the flask to rise to 1.000 atm?

A) 628 s B) 33.4 s C) 51.2 s D) 111 s E) 48.3 s