Chapter 14: Chemical Kinetics

1. Which one of the following units would not be an acceptable way to express reaction rate?
A) M / s
B) $\mathrm{M} \cdot \mathrm{min}^{-1}$
C) $\mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~s}^{-1}$
D) $\mathrm{mol} \cdot \mathrm{L}^{-1} \cdot \mathrm{~s}^{-1}$
E) $\mathrm{mmHg} / \mathrm{min}$
2. For the reaction $\mathrm{BrO}_{3}^{-}+5 \mathrm{Br}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ at a particular time, $-\Delta\left[\mathrm{BrO}_{3}^{-}\right] / \Delta \mathrm{t}=$ $1.5 \times 10^{-2} \mathrm{M} / \mathrm{s}$. What is $-\Delta[\mathrm{Br}] / \Delta \mathrm{t}$ at the same instant?
A) $\quad 13 \mathrm{M} / \mathrm{s}$
B) $7.5 \times 10^{-2} \mathrm{M} / \mathrm{s}$
C) $1.5 \times 10^{-2} \mathrm{M} / \mathrm{s}$
D) $3.0 \times 10^{-3} \mathrm{M} / \mathrm{s}$
E) $\quad 330 \mathrm{M} / \mathrm{s}$
3. For the reaction $\mathrm{C}_{6} \mathrm{H}_{14}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}), \Delta \mathrm{P}\left(\mathrm{H}_{2}\right) / \Delta \mathrm{t} \quad$ was found to be 2.5×10^{-2} $\mathrm{atm} / \mathrm{s}$, where $\Delta \mathrm{P}\left(\mathrm{H}_{2}\right)$ is the change in pressure of hydrogen. Determine $\Delta \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{14}\right) / \Delta \mathrm{t}$ for this reaction at the same time.
A) $2.5 \times 10^{-2} \mathrm{~atm} / \mathrm{s}$
B) $-6.2 \times 10^{-3} \mathrm{~atm} / \mathrm{s}$
C) $-2.5 \times 10^{-2} \mathrm{~atm} / \mathrm{s}$
D) $\quad 0.10 \mathrm{~atm} / \mathrm{s}$
E) $6.2 \times 10^{-3} \mathrm{~atm} / \mathrm{s}$
4. For the overall chemical reaction shown below, which one of the following statements can be rightly assumed?
$2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
A) The reaction is third-order overall.
B) The reaction is second-order overall.
C) The rate law is, rate $=\mathrm{k}\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2}\left[\mathrm{O}_{2}\right]$.
D) The rate law is, rate $=\mathrm{k}\left[\mathrm{H}_{2} \mathrm{~S}\right]\left[\mathrm{O}_{2}\right]$.
E) The rate law cannot be determined from the information given.
5. For the hypothetical reaction $\mathrm{A}+3 \mathrm{~B} \rightarrow 2 \mathrm{C}$, the rate should be expressed as
A) \quad rate $=\Delta[\mathrm{A}] / \Delta \mathrm{t}$.
B) \quad rate $=-\Delta[C] / \Delta t$.
C) \quad rate $=-3 \Delta[\mathrm{~B}] / \Delta \mathrm{t}$.
D) rate $=1 / 2 \Delta[\mathrm{C}] / \Delta \mathrm{t}$.
E) \quad rate $=1 / 3 \Delta[B] / \Delta \mathrm{t}$.
6. The reaction $\mathrm{A}+2 \mathrm{~B} \rightarrow$ products was found to have the rate law, rate $=k[A][B]^{2}$. Predict by what factor the rate of reaction will increase when the concentration of A is doubled and the concentration of B is also doubled.
A) 2
B) 4
C) 6
D) 8
E) 9
7. Appropriate units for a first-order rate constant are
A) M / s.
B) $1 / \mathrm{M} \cdot \mathrm{s}$.
C) $1 / \mathrm{s}$.
D) $\quad 1 / M^{2} \cdot \mathrm{~s}$.
8. A rate constant will have the units $\mathrm{mol} \cdot \mathrm{L}^{-1} \cdot \mathrm{~s}^{-1}$ when the reaction is overall
A) zero order.
D) third order.
B) first order.
E) fourth order.
C) second order.
9. Chlorine dioxide reacts in basic water to form chlorite and chlorate according to the following chemical equation:

$$
2 \mathrm{ClO}_{2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \quad \rightarrow \mathrm{ClO}_{2}^{-}(\mathrm{aq})+\mathrm{ClO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A kinetic study of this reaction under a certain set of conditions yielded the data below.

Exp	$\left[\mathrm{ClO}_{2}\right](\mathrm{M})$	$[\mathrm{OH}](\mathrm{M})$	$-\Delta\left[\mathrm{ClO}_{2}\right] / \Delta \mathrm{t}(\mathrm{M} / \mathrm{s})$
1	0.0500	0.100	5.75×10^{-2}
2	0.100	0.100	2.30×10^{-1}
3	0.100	0.0500	1.15×10^{-1}

A) \quad rate $=k\left[\mathrm{ClO}_{2}\right]\left[\mathrm{OH}^{-}\right]$
D) rate $=\mathrm{k}\left[\mathrm{ClO}_{2}\right]^{2}\left[\mathrm{OH}^{-}\right]^{2}$
B) rate $=\mathrm{k}\left[\mathrm{ClO}_{2}\right]^{2}\left[\mathrm{OH}^{-}\right]$
E) \quad rate $=\mathrm{k}\left[\mathrm{ClO}_{2}\right]^{4}\left[\mathrm{OH}^{-}\right]$
C) \quad rate $=\mathrm{k}\left[\mathrm{ClO}_{2}\right]\left[\mathrm{OH}^{-}\right]^{2}$
19. Use the following data to determine the rate law for the reaction shown below. $2 \mathrm{NO}+\mathrm{H}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$

Expt. \#	$[\mathrm{NO}]_{0}$	$\left[\mathrm{H}_{2}\right]_{0}$	$\underline{\text { Initial rate }}$
	0.021	0.065	$1.46 \mathrm{M} / \mathrm{min}$
2	0.021	0.260	$1.46 \mathrm{M} / \mathrm{min}$
3	0.042	0.065	$5.84 \mathrm{M} / \mathrm{min}$

A) \quad rate $=k[\mathrm{NO}]$
D) rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]$
B) \quad rate $=k[\mathrm{NO}]^{2}$
E) \quad rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]^{2}$
C) \quad rate $=k[\mathrm{NO}]\left[\mathrm{H}_{2}\right]$
21. At $25^{\circ} \mathrm{C}$ the rate constant for the first-order decomposition of a pesticide solution is 6.40 $\times 10^{-3} \mathrm{~min}^{-1}$. If the starting concentration of pesticide is 0.0314 M , what concentration will remain after 62.0 min at $25^{\circ} \mathrm{C}$?
A) $1.14 \times 10^{-1} \mathrm{M}$
B) $\quad 47.4 \mathrm{M}$
C) $\quad-8.72 .0 \mathrm{M}$
D) $2.11 \times 10^{-2} \mathrm{M}$
E) $2.68 \times 10^{-2} \mathrm{M}$
23. The following initial rate data apply to the reaction below.

$\underset{2}{\mathrm{~F}_{2}(\mathrm{~g})+2 \mathrm{Cl}_{2} \mathrm{O}(\mathrm{g})} \rightarrow \underset{\text { Expt. \# }}{2 \mathrm{FClO}_{2}(\mathrm{~g})}$	$\left[\mathrm{F}_{2}\right](\mathrm{M})$	$\mathrm{Cl}_{2}(\mathrm{~g})$	
1	0.05	0.010	$\underline{\left.\mathrm{Cl}_{2} \mathrm{O}\right](\mathrm{M})}$
2	0.05	0.040	Initial rate
3	0.10	0.010	2.0×10^{-4}
			1.0×10^{-3}

Which of the following is the rate law (rate equation) for this reaction?
A) rate $=\mathrm{k}\left[\mathrm{F}_{2}\right]^{2}\left[\mathrm{Cl}_{2} \mathrm{O}\right]^{4}$
D) rate $=\mathrm{k}\left[\mathrm{F}_{2}\right]\left[\mathrm{Cl}_{2} \mathrm{O}\right]^{2}$
B) rate $=\mathrm{k}\left[\mathrm{F}_{2}\right]^{2}\left[\mathrm{Cl}_{2} \mathrm{O}\right]$
E) \quad rate $=k\left[\mathrm{~F}_{2}\right]^{2}\left[\mathrm{Cl}_{2} \mathrm{O}\right]^{2}$
C) rate $=\mathrm{k}\left[\mathrm{F}_{2}\right]\left[\mathrm{Cl}_{2} \mathrm{O}\right]$
25. A first-order reaction has a rate constant of $3.00 \times 10^{-3} \mathrm{~s}^{-1}$. The time required for the reaction to be 75.0% complete is
A) 95.8 s .
B) 462 s .
C) 231 s .
D) 201 s .
E) 41.7 s .
27. Ammonium ion $\left(\mathrm{NH}_{4}{ }^{+}\right)$reacts with nitrite ion $\left(\mathrm{NO}_{2}{ }^{-}\right)$to yield nitrogen gas and liquid water. The following initial rates of reaction have been measured for the given reactant concentrations.

Expt. \#	$\left[\mathrm{NH}_{4}{ }^{+}\right]$	$\left[\mathrm{NO}_{2}{ }^{-}\right]$	Initial rate $(\mathrm{M} / \mathrm{hr})$
1	0.010	0.020	0.020
2	0.015	0.020	0.030
3	0.030	0.010	0.015

Which of the following is the rate law (rate equation) for this reaction?
A) \quad rate $=k\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{NO}_{2}\right]^{4}$
D) rate $=\mathrm{k}\left[\mathrm{NH}_{4}^{+}\right]^{2}\left[\mathrm{NO}_{2}^{-}\right]$
B) \quad rate $=\mathrm{k}\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{NO}_{2}\right]$
E) \quad rate $=\mathrm{k}\left[\mathrm{NH}_{4}^{+}\right]^{1 / 2}\left[\mathrm{NO}_{2}\right]^{1 / 4}$
C) rate $=\mathrm{k}\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{NO}_{2}\right]^{2}$
29. The isomerization of cyclopropane to form propene is a first-order reaction.

\longrightarrow

At $760 \mathrm{~K}, 15 \%$ of a sample of cyclopropane changes to propene in 6.8 min . What is the half-life of cyclopropane at 760 K ?
A) $3.4 \times 10^{-2} \mathrm{~min}$
B) 2.5 min
C) 23 min
D) 29 min
E) 230 min
31. The isomerization of cyclopropane to propene follows first-order kinetics.

At 700 K , the rate constant for this reaction is $6.2 \times 10^{-4} \mathrm{~min}^{-1}$. How many minutes are required for 10.0% of a sample of cyclopropane to isomerize to propene?
A) $16,100 \mathrm{~min}$
B) 170 min
C) $3,710 \mathrm{~min}$
D) $1.43 \times 10^{-3} \mathrm{~min}$
E) 1,120 min
33. A city's water supply is contaminated with a toxin at a concentration of $0.63 \mathrm{mg} / \mathrm{L}$. Fortunately, this toxin decomposes to a safe mixture of products by first-order kinetics with a rate constant of $0.27 \mathrm{day}^{-1}$. How long will it take for half of the toxin to decompose?
A) 0.17 days
B) 0.27 days
C) 0.38 days
D) 2.3 days
E) 2.6 days
35. A first-order reaction has a rate constant of $7.5 \times 10^{-3} / \mathrm{s}$. The time required for the reaction to be 60% complete is
A) $3.8 \times 10^{-3} \mathrm{~s}$.
B) $6.9 \times 10^{-3} \mathrm{~s}$.
C) 68 s .
D) 120 s .
E) 130 s .
37. Benzoyl chloride, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$, reacts with water to form benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$, and hydrochloric acid. This first-order reaction is 25% complete after 26 s . How much longer would one have to wait in order to obtain 99% conversion of benzoyl chloride to benzoic acid?
A) 393 s
B) 419 s
C) 183 s
D) 293 s
E) 209 s
39. A certain reaction $\mathrm{A} \rightarrow$ products is second order in A . If this reaction is 85% complete in 12 minutes, how long would it take for the reaction to be 15% complete?
A) 110 s
B) 27 s
C) 62 s
D) 130 s
E) 22 s
41. For the reaction $X+Y \rightarrow Z$, the reaction rate is found to depend only upon the concentration of X . A plot of $1 / \mathrm{X}$ verses time gives a straight line.

What is the rate law for this reaction?
A) rate $=\mathrm{k}[\mathrm{X}]$
B) \quad rate $=\mathrm{k}[\mathrm{X}]^{2}$
C) \quad rate $=k[\mathrm{X}][\mathrm{Y}]$
D) \quad rate $=k$ $[\mathrm{X}]^{2}[\mathrm{Y}]$
43. The thermal decomposition of acetaldehyde, $\mathrm{CH}_{3} \mathrm{CHO} \rightarrow \mathrm{CH}_{4}+\mathrm{CO}$, is a second-order reaction. The following data were obtained at $518^{\circ} \mathrm{C}$.

| $\underline{\text { time, } \mathrm{s}}$ | Pressure $\mathrm{CH}_{3} \underline{\mathrm{CHO},} \mathbf{m m H g}$ |
| :---: | :---: | :---: |
| 0 | 364 |
| 42 | 330 |
| 105 | 290 |
| 720 | 132 |

Calculate the rate constant for the decomposition of acetaldehyde from the above data.
A) $2.2 \times 10^{-3} / \mathrm{s}$
B) $0.70 \mathrm{mmHg} / \mathrm{s}$
C) $2.2 \times 10^{-3} / \mathrm{mmHg} \cdot \mathrm{s}$
D) $6.7 \times 10^{-6} / \mathrm{mmHg} \cdot \mathrm{s}$
E) $5.2 \times 10^{-5} / \mathrm{mmHg} \cdot \mathrm{s}$
45. For the chemical reaction $A \rightarrow B+C$, a plot of $[A]_{t}$ versus time is found to give a straight line with a negative slope. What is the order of reaction with respect to A ?
A) zeroth
B) first
C) second
D) third
E) Such a plot cannot reveal the order of the reaction.
47. The graphs below all refer to the same reaction. What is the order of this reaction?

A) zeroth order
B) first order
C) second order
D) unable to predict
49. For a second order reaction, the half-life is equal to
A) $t_{1 / 2}=0.693 / \mathrm{k}$.
B) $\mathrm{t}_{1 / 2}=\mathrm{k} / 0.693$.
C) $t_{1 / 2}=1 / \mathrm{k}[\mathrm{A}]_{0}$.
D) $\mathrm{t}_{1 / 2}=\mathrm{k}$.
E) $\mathrm{t}_{1 / 2}=[\mathrm{A}]_{0} / 2 \mathrm{k}$.
51. The Arrhenius equation is $k=\mathrm{Ae}^{-\mathrm{E} / \mathrm{RT}}$. The slope of a plot of $\ln \mathrm{k} v$ v. $1 / \mathrm{T}$ is equal to
A) -k .
B) k .
C) E_{a}.
D) $-E_{a} / R$.
E) A .
53. The activation energy for the reaction $\mathrm{CH}_{3} \mathrm{CO} \rightarrow \mathrm{CH}_{3}+\mathrm{CO}$ is $71 \mathrm{~kJ} / \mathrm{mol}$. How many times greater is the rate constant for this reaction at $170^{\circ} \mathrm{C}$ than at $150^{\circ} \mathrm{C}$?
A) 0.40
B) 1.1
C) 2.5
D) 4.0
E) 5.0
55. At $25^{\circ} \mathrm{C}$, by what factor is the reaction rate increased by a catalyst that reduces the activation energy of the reaction by $1.00 \mathrm{~kJ} / \mathrm{mol}$?
A) 1.63
B) 123
C) 1.04
D) 1.50
E) 2.53
57. The activation energy for the following reaction is $60 . \mathrm{kJ} / \mathrm{mol}$.
$\mathrm{Sn}^{2+}+2 \mathrm{Co}^{3+} \rightarrow \mathrm{Sn}^{4+}+2 \mathrm{Co}^{2+}$
By what factor (how many times) will the rate constant increase when the temperature is raised from $10^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$?
A) 1.002
B) 4.6
C) 5.6
D) 2.8
E) 696
59. The isomerization of methyl isocyanide, $\mathrm{CH}_{3} \mathrm{NC} \rightarrow \mathrm{CH}_{3} \mathrm{CN}$, follows first-order kinetics. The half-lives were found to be 161 min at $199^{\circ} \mathrm{C}$ and 12.5 min at $230^{\circ} \mathrm{C}$. Calculate the activation energy for this reaction.
A) $6.17 \times 10^{-3} \mathrm{~kJ} / \mathrm{mol}$
B) $\quad 31.4 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad 78.2 \mathrm{~kJ} / \mathrm{mol}$
D) $124 \mathrm{~kJ} / \mathrm{mol}$
E) $163 \mathrm{~kJ} / \mathrm{mol}$
61. The reaction $\mathrm{C}_{4} \mathrm{H}_{10} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{C}_{2} \mathrm{H}_{4}$ has an activation energy $\left(\mathrm{E}_{\mathrm{a}}\right)$ of $350 \mathrm{~kJ} / \mathrm{mol}$, and the E_{a} of the reverse reaction is $260 \mathrm{~kJ} / \mathrm{mol}$. Estimate $\Delta \mathrm{H}$, in $\mathrm{kJ} / \mathrm{mol}$, for the reaction as written above.
A) $\quad-90 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad+90 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad 350 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad-610 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad+610 \mathrm{~kJ} / \mathrm{mol}$
63. Given that E_{a} for a certain biological reaction is $48 \mathrm{~kJ} / \mathrm{mol}$ and that the rate constant is 2.5 $\times 10^{-2} \mathrm{~s}^{-1}$ at $15^{\circ} \mathrm{C}$, what is the rate constant at $37^{\circ} \mathrm{C}$?
A) $2.7 \times 10^{-2} \mathrm{~s}^{-1}$
B) $2.5 \times 10^{-1} \mathrm{~s}^{-1}$
C) $1.0 \times 10^{-1} \mathrm{~s}^{-1}$
D) $6.0 \times 10^{-3} \mathrm{~s}^{-1}$
E) $1.1 \mathrm{~s}^{-1}$
65. For the chemical reaction system described by the diagram below, which statement is true?

A) The forward reaction is endothermic.
B) The activation energy for the forward reaction is greater than the activation energy for the reverse reaction.
C) At equilibrium, the activation energy for the forward reaction is equal to the activation energy for the reverse reaction.
D) The activation energy for the reverse reaction is greater than the activation energy for the forward reaction.
E) The reverse reaction is exothermic.
67. For the chemical reaction system described by the diagram below, which statement is true?

If the E_{a} for the forward reaction is $25 \mathrm{~kJ} / \mathrm{mol}$ and the enthalpy of reaction is $-95 \mathrm{~kJ} / \mathrm{mol}$, what is E_{a} for the reverse reaction?
A) $120 \mathrm{~kJ} / \mathrm{mol}$
B) $70 \mathrm{~kJ} / \mathrm{mol}$
C) $95 \mathrm{~kJ} / \mathrm{mol}$
D) $25 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad-70$ $\mathrm{kJ} / \mathrm{mol}$
69. When the concentrations of reactant molecules are increased, the rate of reaction increases. The best explanation for this phenomenon is that as the reactant concentration increases,
A) the average kinetic energy of molecules increases.
B) the frequency of molecular collisions increases.
C) the rate constant increases.
D) the activation energy increases.
E) the order of reaction increases.
71. The rate law for the reaction $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ is rate $=\mathrm{k}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{I}^{-}\right]$. The following mechanism has been suggested.

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{I}^{-} \rightarrow \mathrm{HOI}+\mathrm{OH}^{-} & \text {slow } \\
\mathrm{OH}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O} & \text { fast } \\
\mathrm{HOI}+\mathrm{H}^{+}+\mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O} & \text { fast }
\end{array}
$$

Identify all intermediates included in this mechanism.
A) H^{+}and I^{-}
B) H^{+}and HOI
C) HOI and OH^{-}
D) H^{+}only
E) $\mathrm{H}_{2} \mathrm{O}$ and OH^{-}
73. The rate law for the reaction $2 \mathrm{NO}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{O}_{2}$ is rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]\left[\mathrm{O}_{3}\right]$. Which one of the following mechanisms is consistent with this rate law?
A) $\mathrm{NO}_{2}+\mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$
$\mathrm{N}_{2} \mathrm{O}_{4}+\mathrm{O}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{O}_{2}$
(fast)
(slow)
B) $\quad \mathrm{NO}_{2}+\mathrm{O}_{3} \rightarrow \quad \mathrm{NO}_{5}$ (fast)

$$
\mathrm{NO}_{5}+\mathrm{NO}_{5} \rightarrow \quad \mathrm{~N}_{2} \mathrm{O}_{5}+\frac{5}{2} \mathrm{O}_{2}
$$

(slow)
C) $\quad \mathrm{NO}_{2}+\mathrm{O}_{3} \rightarrow \quad \mathrm{NO}_{3}+\mathrm{O}_{2}$
(slow)
$\mathrm{NO}_{3}+\mathrm{NO}_{2} \rightarrow \quad \mathrm{~N}_{2} \mathrm{O}_{5}$
(fast)
D) $\mathrm{NO}_{2}+\mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{O}_{2} \quad$ (slow)
$\mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{O}_{3} \rightarrow \quad \mathrm{~N}_{2} \mathrm{O}_{5}$
(fast)
75. The gas phase reaction of nitrogen dioxide and carbon monoxide was found by experiment to be second-order with respect to NO_{2}, and zeroth-order with respect to CO below $25^{\circ} \mathrm{C}$.
$\mathrm{NO}_{2}+\mathrm{CO} \rightarrow \mathrm{NO}+\mathrm{CO}_{2}$
Which one of the following mechanisms is consistent with the observed reaction order?
A) $\mathrm{NO}_{2}+2 \mathrm{CO} \rightarrow \mathrm{N}+2 \mathrm{CO}_{2} \quad$ fast
$\mathrm{N}+\mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}$
slow
B) $\mathrm{NO}_{2}+2 \mathrm{CO} \rightarrow \mathrm{N}+2 \mathrm{CO}_{2}$
slow
$\mathrm{N}+\mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}$
fast
C) $\mathrm{NO}_{2}+\mathrm{NO}_{2} \rightarrow \mathrm{NO}_{3}+\mathrm{NO}$ fast
$\mathrm{NO}_{3}+\mathrm{CO} \rightarrow \mathrm{NO}_{2}+\mathrm{CO}_{2}$
D) $\mathrm{NO}_{2}+\mathrm{NO}_{2} \rightarrow \mathrm{NO}_{3}+\mathrm{NO}$
slow
slow
$\mathrm{NO}_{3}+\mathrm{CO} \rightarrow \mathrm{NO}_{2}+\mathrm{CO}_{2}$
fast
77. Complete the following statement: A catalyst
A) increases the activation energy.
B) alters the reaction mechanism.
C) increases the average kinetic energy of the reactants.
D) increases the concentration of reactants.
E) increases the collision frequency of reactant molecules.
79. The activation energy of a certain uncatalyzed reaction is $64 \mathrm{~kJ} / \mathrm{mol}$. In the presence of a catalyst, the E_{a} is $55 \mathrm{~kJ} / \mathrm{mol}$. How many times faster is the catalyzed than the uncatalyzed reaction at $400^{\circ} \mathrm{C}$? Assume that the frequency factor remains the same.
A) 5.0 times
B) 1.16 times
C) 15 times
D) 2.0 times
E) 0.2 times
81. Peroxodisulfate ion can oxidize iodide ions to iodine according to the balanced equation $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{I}^{-} \quad \rightarrow \quad 2 \mathrm{SO}_{4}{ }^{2-}+\mathrm{I}_{2}$.
The reaction is catalyzed by certain chemical species. Identify the catalyst in the following mechanism:
step 1: $\quad \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \quad \rightarrow \quad \mathrm{Fe}^{2+}+\mathrm{I}_{2}$
step 2: $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+\mathrm{Fe}^{2+} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}+\mathrm{Fe}^{3+}$
A) Fe^{3+}
B) I^{-}
C) $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$
D) Fe^{2+}
E) $\mathrm{SO}_{4}{ }^{2-}$
83. For the reaction whose rate law is rate $=k[X]$, a plot of which of the following is a straight line?
A) $[\mathrm{X}]$ versus time
D) [X] versus $1 /$ time
B) $\ln [\mathrm{X}]$ versus time
E) $\ln [\mathrm{X}]$ versus $1 /$ time
C) $1 /[\mathrm{X}]$ versus time
85. At a particular temperature the first-order gas-phase reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{O}_{2}$ has a half-life for the disappearance of dinitrogen pentoxide of 3240 s . If 1.00 atm of $\mathrm{N}_{2} \mathrm{O}_{5}$ is introduced into an evacuated 5.00 L flask, what will be the total pressure of the gases in the flask after 1.50 hours?
A) 0.685 atm
B) 1.00 atm
C) 0.315 atm
D) 1.68 atm
E) 1.34
atm
87. When acetaldehyde at a pressure of 364 mmHg is introduced into an evacuated 500 mL flask at $518^{\circ} \mathrm{C}$, the half-life for the second-order decomposition process, $\mathrm{CH}_{3} \mathrm{CHO} \rightarrow$ $\mathrm{CH}_{4}+\mathrm{CO}$, is 410 . s. What will the total pressure in the flask be after 1.00 hour?
A) 327 mmHg
B) 654 mmHg
C) 37 mmHg
D) $691 \mathrm{mmHg} \quad \mathrm{E})$ 728 mmHg
89. The first-order decomposition of phosphene to phosphorus and hydrogen $4 \mathrm{PH}_{3}(\mathrm{~g}) \rightarrow$ $\mathrm{P}_{4}(\mathrm{~g})+6 \mathrm{H}_{2}(\mathrm{~g})$ has a half-life of 35.0 s at $680^{\circ} \mathrm{C}$. Starting with 520 mmHg of pure phosphene in an $8.00-\mathrm{L}$ flask at $680^{\circ} \mathrm{C}$, how long will it take for the total pressure in the flask to rise to 1.000 atm ?
A) 628 s
B) 33.4 s
C) 51.2 s
D) 111 s
E) 48.3 s

